题目列表(包括答案和解析)
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF
平面EFDC.
![]()
(Ⅰ) 当
,是否在折叠后的AD上存在一点
,且
,使得CP∥平面ABEF?若存在,求出
的值;若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥A
CDF的体积有最大值?并求出这个最大值.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF
平面EFDC.![]()
(Ⅰ) 当
,是否在折叠后的AD上存在一点
,且
,使得CP∥平面ABEF?若存在,求出
的值;若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥A
CDF的体积有最大值?并求出这个最大值.
如图,P-AD-C是直二面角,四边形ABCD是∠BAD=120°的菱形,AB=2,PA⊥AD,E是CD的中点,设PC与平面ABCD所成的角为45°.
(1)求证:平面PAE⊥平面PCD;
(2)试问在线段AB(不包括端点)上是否存在一点F,使得二面角A-PE-D的大小为45°?若存在,请求出AF的长,若不存在,请说明理由.
![]()
第18题图
(1)当平面BFG⊥平面BEG时,求G点的位置;
(2)在(1)的前提下,求直线GE与平面BFG所成的角.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com