取第一象限内的两点P().P().使1...2.依次成等差数列.1...2依次成等比数列.则点P.P与射线l:y=x 的关系为 ( ) A.点P.P都在l的上方 B.点P.P都在l上 C.点P.P都在l的下方 D.点P在l的下方.点P在l的上方. 查看更多

 

题目列表(包括答案和解析)

在直角坐标平面中,△ABC的两个顶点的坐标分别为A(-
7
7
a,0),B(
7
7
a,0)(a>0)
,两动点M、N满足
MA
+
MB
+
MC
=
0
,|
NC
|=
7
|
NA
|=
7
|
NB
|
,向量
MN
AB
共线.
(1)求△ABC的顶点C的轨迹方程;
(2)若过点P(0,a)的直线与(1)的轨迹相交于E、F两点,求
PE
PF
的取值范围.
(3)若G(-a,0),H(2a,0),θ为C点的轨迹在第一象限内的任意一点,则是否存在常数λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,其左、右焦点分别是F1、F2,点P是坐标平面内的一点,且|OP|=
10
2
PF1
F2
=
1
2
(点O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
OM
+
ON
OA
,λ∈(0,2)求椭圆的弦-3的长度的取值范围.

查看答案和解析>>

在直角坐标平面中,△ABC的两个顶点A,B的坐标分别为A(a,0),B(a,0)(a>0),两动点M,N满足++=0,||=7||=7||,向量共线.

(1)求△ABC的顶点C的轨迹;

(2)若过点P(0,a)的直线与点C的轨迹相交于E、F两点,求·的取值范围;

(3)若G(-a,0),H(2a,0),Q点为C点轨迹在第一象限内的任意一点,则是否存在常数λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

在直角坐标平面中,△ABC的两个顶点的坐标分别为,两动点M、N满足,向量共线.
(1)求△ABC的顶点C的轨迹方程;
(2)若过点P(0,a)的直线与(1)的轨迹相交于E、F两点,求的取值范围.
(3)若G(-a,0),H(2a,0),θ为C点的轨迹在第一象限内的任意一点,则是否存在常数λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

在直角坐标平面中,△ABC的两个顶点的坐标分别为数学公式,两动点M、N满足数学公式,向量数学公式数学公式共线.
(1)求△ABC的顶点C的轨迹方程;
(2)若过点P(0,a)的直线与(1)的轨迹相交于E、F两点,求数学公式的取值范围.
(3)若G(-a,0),H(2a,0),θ为C点的轨迹在第一象限内的任意一点,则是否存在常数λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案