3.已知函数在(1.2)有一个零点则实数的值范围是 ( ) A. B. C. 或 D. 查看更多

 

题目列表(包括答案和解析)

已知函数在(1,2)有一个零点,则实数a的取值范围是(    )

A、(1,4)            B、(-1,4)                C、((4,)         D、(-4,4)

查看答案和解析>>

已知函数f(x)=
x1+|x|
 (x∈R)
时,则下列结论不正确是
 

(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

已知函数f(x)=
x1+|x|
(x∈R)时,则下列结论正确的是
(1)(2)(3)
(1)(2)(3)

(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

已知函数f(x)=ex+ax2,其中a为实常数.
(1)若f(x)在区间(1,2)上单调递减,求实数a的取值范围;
(2)当a=-2时,求证:f(x)有3个零点;
(3)设y=g(x)为f(x)在x0处的切线,若“?x≠x0,(f(x)-g(x))(x-x0)>0”,则称x0为f(x)的一个优美点,是否存在实数a,使得x0=2是f(x)的一个优美点?说明理由.(参考数据:e≈2.718)

查看答案和解析>>

已知函数f(x)=ax2+4x-2满足对任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求实数a的取值范围;
(2)试讨论函数y=f(x)在区间[-1,1]上的零点的个数;
(3)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>


同步练习册答案