(本小题满分12分.其中第小问8分) 已知数列的前项和为,且. (Ⅰ)求的通项公式; (Ⅱ)已知数列满足. (i)证明: ; (ii)是否存在最大的正数,使不等式, ,对一切都成立? 若存在,求出的最大值,若不存在,请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

给出30个数:1,2,4,7,……,其规律是:第1个数是1,第2个数比第1个数大1, 第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),

(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,使之能完成该题算法功能;(II)根据程序框图写出程序

 1. 把程序框图补充完整:(1)________________(2)____________________

 2. 程序:

                                                      

查看答案和解析>>

 (本小题满分12分,第一问4分,第二问8分)

如图(20),椭圆的中心为原点O,离心率,一条准线的方程为

(Ⅰ)求该椭圆的标准方程。

(Ⅱ)设动点P满足,其中M,N是椭圆上的点。直线OM与ON的斜率之积为。问:是否存在两个定点,使得为定值。若存在,求的坐标;若不存在,说明理由。

 

 

 

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

(本题满分12分)

从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组.第二组;…第八组,右图是按上述分组得到的条形图。

(I)根据已知条件填写下表:

组 别

1

2

3

4

5

6

7

8

样本数

  

(II)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;

   (Ⅲ)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?

查看答案和解析>>

(本题满分12分)

从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组.第二组;…第八组,右图是按上述分组得到的条形图。

(I)根据已知条件填写下表:

组 别

1

2

3

4

5

6

7

8

样本数

  

(II)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;

   (Ⅲ)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?

查看答案和解析>>


同步练习册答案