已知点A.若向量OA// OB则实数m的值为( ) A.2 B.-3 C.2或-3 D. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知点A(2,0),点M为曲线y=
x+2
上任意一点,点P为AM的中点;点P的轨迹为C;
(1)求动点P的轨迹C的方程F(x,y)=0;
(2)将轨迹C的方程变形为函数y=f(x);请写出此函数的定义域、值域、单调区间、奇偶性、最值等(不证明),并画出大致图象.
(3)若直线l:y=
x
10
+1
与轨迹C有两个不同的公共点B,K,且点G的坐标为(
1
8
,0)
,求|BG|+|KG|的值.

查看答案和解析>>

已知点A(2,0),点M为曲线上任意一点,点P为AM的中点;点P的轨迹为C;
(1)求动点P的轨迹C的方程F(x,y)=0;
(2)将轨迹C的方程变形为函数y=f(x);请写出此函数的定义域、值域、单调区间、奇偶性、最值等(不证明),并画出大致图象.
(3)若直线与轨迹C有两个不同的公共点B,K,且点G的坐标为,求|BG|+|KG|的值.

查看答案和解析>>

已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量的夹角;
(3)证明直线PQ恒过一个定点.

查看答案和解析>>

已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量的夹角;
(3)证明直线PQ恒过一个定点.

查看答案和解析>>

已知点P(0,一2),椭圆c:
x2
a2
+
y2
b2
=1
(a>b>0),椭圆的左右焦点分别为F1、F2,若三角形PF1F2的面积为2,且a2,b2的等比中项为6
2

(1)求椭圆的方程;
(2)若椭圆上有A、B两点,使△PAB的重心为F1,求直线AB的方程;
(3)在(2)的条件下,设M为椭圆上一动点,求△MAB的面积的最大值及此时点M的坐标.

查看答案和解析>>


同步练习册答案