7.解:(Ⅰ). 因为函数在及取得极值.则有.. 即 解得.. 可知.. . 当时., 当时., 当时.. 所以.当时.取得极大值.又.. 则当时.的最大值为. 因为对于任意的.有恒成立. 所以 . 解得 或. 因此的取值范围为 小结:对于导数的知识点.一要理解概念.二要运用几何意义进行分析问题.三就要巧用运用导数的符号来判定函数单调性的方法来求最值.四就要对参数问题的讨论要到位.注意分类的原则. 本资料由 提供! 查看更多

 

题目列表(包括答案和解析)

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

已知函数

(1)若函数的图象经过P(3,4)点,求a的值;

(2)比较大小,并写出比较过程;

(3)若,求a的值.

【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.

(2)问中,对底数a进行分类讨论,利用单调性求解得到。

(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .

解:⑴∵函数的图象经过,即.        … 2分

,所以.             ………… 4分

⑵当时,;

时,. ……………… 6分

因为,

时,上为增函数,∵,∴.

.当时,上为减函数,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

为实数,首项为,公差为的等差数列的前n项和为,满足

(1)若,求;

(2)求d的取值范围.

【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的,得到结论

第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。

解:(1)因为设为实数,首项为,公差为的等差数列的前n项和为,满足

所以

(2)因为

得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>


同步练习册答案