题目列表(包括答案和解析)
(本小题满分14分)已知定义在
上的函数
,其中
为常数。
(Ⅰ)若当
时,函数
取得极值,求
的值;
(Ⅱ)若函数
在区间(-1,0)上是增函数,求
的取值范围;
(Ⅲ)若函数
,在
处取得最大值,求正数
的取值范围。
(本小题满分14分)已知函数
=
+
有如下性质:如果常数
>0,那么该
函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分)已知函数
=
+
有如下性质:如果常数
>0,那么该
函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分)已知函数f(x)=
(
).
(1)求证:f(x)在(0,+∞)上是增函数; (2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)如果函数
自变量取值区间
,其值域区间也为
,则称区间
为
的保值区间。已知f(x)的保值区间为[m,n](m≠n),求实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com