题目列表(包括答案和解析)
已知函数f(x)=(
)x,x∈[-1,1],函数g(x)=f2(x)-2af(x)+3的最小值为h(a).
(1)求h(a)的解析式;
(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.
若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且![]()
![]()
,使得:(1)任取x0∈[a,b],有f(x0)=C(C是常数);(2)对于D内任意y0,当y0
[a,b],总有f(y0)<C.我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知
是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.
(1)已知sin
+cos
=
(0<
<π),求tan
及sin3
-cos3
的值.
(2)在上面的题目中,直接给出了已知sinα±cosα的值,然后利用sinα±cosα与sinα·cosα的关系使题目得到解决.本题也可以变换条件,由于sinα、cosα和差与积有一定的关系,因此,也可以将它们与一元二次方程联系在一起.例如:关于x的方程2x2-(
+1)x+m=0的两根为sinα和cosα,且α∈(0,2π),
(1)求
+
的值;
(2)求m的值;
(3)求方程的两根及此时的角α.
已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.
已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com