1.2椭圆的简单几何性质(一) 教学目标: 椭圆的范围.对称性.对称中心.离心率及顶点. 重点难点分析 教学重点:椭圆的简单几何性质. 教学难点:椭圆的简单几何性质. 教学设计: [复习引入] 查看更多

 

题目列表(包括答案和解析)

2<m<6是方程
x2
m-2
+
y2
6-m
=1
表示椭圆的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

下列四个命题:
①使用抽签法,每个个体被抽中的机会相等;
②利用秦九韶算法
v0=an
vk=vk-1x+an-k (k=1,2,…,n)
,求多项式 f(x)=x5+2x3-x2+3x+1在x=1的值时v3=2;
③“-3<m<5”是“方程
x2
5-m
+
y2
m+3
=1表示椭圆”的必要不充分条件;
④?a∈R,对?x∈R,使得x2+2x+a<0
其中真命题为
①②③
①②③
(填上序号)

查看答案和解析>>

(2012•济南三模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)和直线L:
x
a
-
y
b
=1,椭圆的离心率e=
6
3
,直线L与坐标原点的距离为
3
2

(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.

查看答案和解析>>

已知椭圆:
x2
8
+
y2
4
=1.
(1)若点(x,y0)为椭圆上的任意一点,求证:直线
x0x
8
+
y0y
4
=1为椭圆的切线;
(2)若点P为直线x+y-4=0上的任意一点,过P作椭圆的切线PM、PN,其中M、N为切点,试求椭圆的右焦点F到直线MN的距离的最大值.

查看答案和解析>>

求下列各曲线的标准方程
(1)椭圆的右焦点坐标是(4,0),离心率是0.8;
(2)焦点在x轴上,焦点到准线的距离为6的抛物线.

查看答案和解析>>


同步练习册答案