2.定义法:若动点的几何关系式符合圆,椭圆,双曲线或抛物线的定义,此时我们一般使用定义法直接得到动点的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

若动点的横坐标、纵坐标使得成等差数列,则点所表示的图形是(  )

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设常数,对是平面上任意一点,定义运算“”:.

(1)若,求动点的轨迹C

(2)计算,并说明其几何意义;

(3)在(1)中的轨迹C中,是否存在两点,使之满足?若存在,求出的取值范围,并请求出的值;若不存在,请说明理由.

查看答案和解析>>

设常数a>0,对x1,x2∈R,P(x,y)是平面上任意一点,定义运算“?”:x1?x2=(x1+x22-(x1-x22
(1)若x≥0,求动点的轨迹C;
(2)计算d1(P)和d2(P),并说明其几何意义;
(3)在(1)中的轨迹C中,是否存在两点A1,A2,使之满足?若存在,求出a的取值范围,并请求出d1(A1)+d1(A2)的值;若不存在,请说明理由.

查看答案和解析>>

定义:若?x0∈R,使得f(x0)=x0成立,则称x0为函数y=f(x)的一个不动点
(1)下列函数不存在不动点的是
C
C
(单选)
   A.f(x)=1-logax(a>1)B.f(x)=x2+(b+2)x+1(b>1)C.f(x)=lnx        D.f(x)=x
(2)设f(x)=2lnx-ax2(a∈R),求f(x)的极值
(3)设g(x)=2lnx-ax2+x-
e
a
+
1
2
(e为自然对数的底数),当a>0时,讨论函数g(x)是否存在不动点,若存在求出a的范围,若不存在说明理由.

查看答案和解析>>

定义变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当θ=arctan
3
4
时,其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)当θ=arctan
3
4
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不动点的存在情况和个数.

查看答案和解析>>


同步练习册答案