解答:(1)如图所示 (2). 所以回归直线方程为. .当时.为31.2466万元. [拓展探究] 证明: . 上式中令则有恒等式: 所以得证. [回顾反思] 求线形回归直线方程的操作步骤是: 第一步:列表,第二步:计算:, 第三步:代入公式计算的值,第四步:写出回归方程. 本章测试 查看更多

 

题目列表(包括答案和解析)

某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组 频数 频率
一组 0≤t<5 0 0
二组 5≤t<10 10 0.10
三组 10≤t<15 10
四组 15≤t<20 0.50
五组 20≤t≤25 30 0.30
合计 100 1.00
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)旅客购票用时的平均数可能落在哪一组?

查看答案和解析>>

15、2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,成绩均为整数).绘制了频数分布表与频数分布直方图(如图所示),请结合图表信息解答下列问题.

(1)补全频数分布表与频数分布直方图;
(2)如果成绩在31分以上(含31分)的同学属于优良,请你估计全校约有多少人达到优良水平;
(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).

查看答案和解析>>

精英家教网某开发商对去年市场上一种商品销售数量及销售利润情况进行了调查,发现:
①销售数量y1(万件)与时间(月份)具有满足如表的一次函数关系:
时间x(月份) 1 2 3 11 12
销售数量y1(万件) 1.7 1.8 1.9 2.7 2.8
②每一件
 
的销售利润y2与时间x(月份)具有如图所示的关系.
请根据以上信息解答下列问题:
(Ⅰ)在三月份,销售这种商品可获利润多少万元?
(Ⅱ)哪一个月的销售利润最大?请说明理由.

查看答案和解析>>

(2013•肇庆二模)某中学高三实验班的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.

(1)求全班人数及分数在[80,90)之间的频数;
(2)计算频率分布直方图中[80,90)的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

精英家教网读图分析解答:设定义在闭区间[-4,4]上的函数y=f(x)的图象如图所示(图中坐标点都是实心点),完成以下几个问题:
(1)x∈[-2,3]时,y的取值范围是
 

(2)该函数的值域为
 

(3)若y=f(x)的定义域为[-4,4],则函数y=f(x+1)的定义域为
 

(4)写出该函数的一个单调增区间为
 

(5)使f(x)=3(x∈[-4,4])的x的值有
 
个.
(6)函数y=f(x)是区间x∈[-4,4]的
 
函数.(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在区间[-4,4]上有且只有三个解,求f(a)的取值范围.

查看答案和解析>>


同步练习册答案