解:(I)设.则. 由题设可得:即 解得 所以. (II).. 列表: x -1 0 (0,1) 1 f¢(x) - 0 + 0 - 0 + f(x) ↘ ↗ ↘ ↗ 由表可得:函数g(x)的单调递增区间为. 查看更多

 

题目列表(包括答案和解析)

若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

【解析】第一问中,利用定义,判定由题意得,由,所以

第二问中, 由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点,从而得到t的范围。

解(I)由题意得,由,所以     (6分)

(II)由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点。

 

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

给出下列四个命题:
①命题p:?x∈R,sinx≤1,则?p:?x∈R,sinx<1.
②当a≥1时,不等式|x-4|+|x-3|<a的解集为非空.
③当x>0时,有lnx+
1
lnx
≥2.
④设复数z满足(1-i)z=2i,则z=1-i.
其中真命题的个数是(  )

查看答案和解析>>


同步练习册答案