解:(Ⅰ). 当时.,当时., 故在单调增加.在单调减少. 的极小值.极大值 (Ⅱ)由知 即 由此及(Ⅰ)知的最小值为.最大值为 因此对一切.的充要条件是. 即.满足约束条件 . 由线性规划得.的最大值为5. 本资料由 提供! 查看更多

 

题目列表(包括答案和解析)

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案