解:(I)因为函数.的图象都过点(.0).所以. 即.因为所以. 又因为.在点(.0)处有相同的切线.所以 而 将代入上式得 因此故.. (II)解法一. 当时.函数单调递减. 由.若,若 由题意.函数在上单调递减.则 所以 又当时.函数在上单调递减. 所以的取值范围为 解法二: 因为函数在上单调递减.且是 上的抛物线. 所以 即解得 所以的取值范围为 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]

(Ⅰ)求a、b的值; 

(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]

【解析】第一问解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

第二问,由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

 

查看答案和解析>>

设向量.

(Ⅰ)求

(Ⅱ)若函数,求的最小值、最大值.

【解析】第一问中,利用向量的坐标表示,表示出数量积公式可得

第二问中,因为,即换元法

得到最值。

解:(I)

(II)由(I)得:

.

时,

 

查看答案和解析>>

已知向量=(),=(,),其中().函数,其图象的一条对称轴为

(I)求函数的表达式及单调递增区间;

(Ⅱ)在△ABC中,abc分别为角A、B、C的对边,S为其面积,若=1,b=l,S△ABC=,求a的值.

【解析】第一问利用向量的数量积公式表示出,然后利用得到,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。

解:因为

由余弦定理得,……11分故

 

查看答案和解析>>


同步练习册答案