10.若用表示已知条件和已学过的定义.定理等.用表示要证明的结论.则分析法解题过程的流程图可表示为 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

从某校高三年级900名学生中随机抽取了名测量身高,据测量被抽取的学生的身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组…第八组,右图是按上述分组方法得到的条形图.

 (1)根据已知条件填写下面表格:

组 别

1

2

3

4

5

6

7

8

样本数

 

 

 

 

 

 

 

 

(2)估计这所学校高三年级900名学生中,身高在以上(含)的人数;

(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,用表示实验小组中男同学的人数,求的分布列及期望

 

 

 

 

 

 

查看答案和解析>>

已知命题p:
x2
m-1
+
y2
m-4
=1
表示双曲线,命题q:
x2
m-2
+
y2
4-m
=1
表示椭圆.
(1)若命题p为真命题,求实数m的取值范围.
(2)判断命题p为真命题是命题q为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个).

查看答案和解析>>

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

数列{an}和数列{bn}(n∈N*)由下列条件确定:
(1)a1<0,b1>0;
(2)当k≥2时,ak与bk满足如下条件:当
ak-1+bk-1
2
≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当
ak-1+bk-1
2
<0时,ak=
ak-1+bk-1
2
,bk=bk-1
解答下列问题:
(Ⅰ)证明数列{ak-bk}是等比数列;
(Ⅱ)记数列{n(bk-an)}的前n项和为Sn,若已知当a>1时,
lim
n→∞
n
an
=0,求
lim
n→∞
Sn

(Ⅲ)m(n≥2)是满足b1>b2>…>bn的最大整数时,用a1,b1表示n满足的条件.

查看答案和解析>>

(2013•怀化三模)若某地区每年各个月份降水量发生周期变化.现用函数f(n)=100[Acos(ωn+
23
π)+m]近似地刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份,A和m是正整数,ω>0.统计发现,该地区每年各个月份降水量有以下规律:
①各年相同的月份,该地区降水量基本相同;
②该地区降水量最大的8月份和最小的12月份相差约400ml;
③2月份该地区降水量约为100ml,随后逐月递增直到8月份达到最大.
(1)试根据已知信息,确定一个符合条件的f(n)的表达式;
(2)一般地,当该地区降水量超过400 ml时,该地区进入了一年中的“汛季”,那么一年中的哪几个月是该地区的“汛季”?请说明理由.

查看答案和解析>>


同步练习册答案