一般地.当a > 0.我们有: 判别式△= b2 – 4ac △ > 0 △ = 0 △ < 0 方程ax2 + bx + c = 0的根 有两个相异实根 x1.x2(x1 < x2) 有两个相等实根 x1 = x2 = - 没有实数根 ax2 + bx + c > 0的 解集 (-∞.x1)∪(x2.+∞) (-∞.- ) ∪(- .+∞) R ax2 + bx + c < 0的 解集 (x1.x2) Φ Φ 查看更多

 

题目列表(包括答案和解析)

给出下列四个结论:
(1)合情推理是由特殊到一般的推理,得到的结论不一定正确,演绎推理是由一般到特殊的推理,得到的结论一定正确;
(2)一般地,当r的绝对值大于0.75时,认为两个变量之间有很强的线性相关关系,如果变量y与x之间的相关系数r=-0.9568,则变量y与x之间具有线性关系;
(3)用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量x2的值越大,说明“x与y有关系”成立的可能性越大;
(4)已知a,b∈R,若a-b>0则a>b;同样的已知a,b∈C(C为复数集)若a-b>0则a>b.
其中结论正确的序号为
(2)(3)
(2)(3)
.(写出你认为正确的所有结论的序号)

查看答案和解析>>

(2007•闸北区一模)已知函数f(x)=ax+b,当x∈[a1,b1]时f(x)的值域为[a2,b2],当x∈[a2,b2]时f(x)的值域为[a3,b3],…依此类推,一般地,当x∈[an-1,bn-1]时f(x)的值域为[an,bn],其中a、b为常数且a1=0,b1=1
(1)若a=1,求数列{an},{bn}的通项公式.
(2)若a>0且a≠1,要使数列{bn}是公比不为1的等比数列,求b的值.
(3)若a<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2000)-(S1+S2+…+S2000)的值.

查看答案和解析>>

(2013•怀化三模)若某地区每年各个月份降水量发生周期变化.现用函数f(n)=100[Acos(ωn+
23
π)+m]近似地刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份,A和m是正整数,ω>0.统计发现,该地区每年各个月份降水量有以下规律:
①各年相同的月份,该地区降水量基本相同;
②该地区降水量最大的8月份和最小的12月份相差约400ml;
③2月份该地区降水量约为100ml,随后逐月递增直到8月份达到最大.
(1)试根据已知信息,确定一个符合条件的f(n)的表达式;
(2)一般地,当该地区降水量超过400 ml时,该地区进入了一年中的“汛季”,那么一年中的哪几个月是该地区的“汛季”?请说明理由.

查看答案和解析>>

在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数f(n)可近似地用函数f(n)=100•(Acos(ωn+2)+k)来刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份;A和k是正整数;ω>0.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:
①各年相同的月份,该地区从事旅游服务工作的人数基本相同;
②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;
③2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,确定一个符合条件的f(n)的表达式;
(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区也进入了一年中的旅游“旺季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.

查看答案和解析>>

在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数f(n)可近似地用函数f(n)=100•(Acos(ωn+2)+k)来刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份;A和k是正整数;ω>0.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:
①各年相同的月份,该地区从事旅游服务工作的人数基本相同;
②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;
③2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,确定一个符合条件的f(n)(2)的表达式;
(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区也进入了一年中的旅游“旺季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.

查看答案和解析>>


同步练习册答案