题目列表(包括答案和解析)
(本小题满分14分)已知数列
的前n项和
满足:
(a为常数,且
). (Ⅰ)求
的通项公式;
(Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为Tn .
求证:
.
(本小题满分14分)已知数列
的前n项和
满足:
(a为常数,且
). (Ⅰ)求
的通项公式;
(Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为Tn .
求证:
.
(本小题满分14分)设
为数列
的前
项和,对任意的
N
,都有![]()
为常数,且
.(1)求证:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,
N![]()
,求数列
的通项公式;(3)在满足(2)的条件下,求证:数列
的前
项和
.
(本小题满分14分)已知定义在
上的奇函数
满足
,且对任意
有
.
(Ⅰ)判断
在
上的奇偶性,并加以证明.
(Ⅱ)令
,
,求数列
的通项公式.
(Ⅲ)设
为![]()
的前
项和,若
对
恒成立,求
的最大值.
(本小题满分14分)已知定义在
上的函数
,满足条件:①
,②对非零实数
,都有
.
(1)求函数
的解析式;
(2)设函数
,直线
分别与函数
,
交于
、
两点,(其中
);设
,
为数列
的前
项和,求证:当
时,
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com