题目列表(包括答案和解析)
(本小题满分14分)数列
中,
;
,对任意的
为正整数都有
。
(1)求证:
是等差数列;
(2)求出![]()
的通项公式
;
(3)若
(
),是否存在实数
使得
对任意的
恒成立?若存在,找出
;若不存在,请说明理由。
(本小题满分14分)数列
中,
;
, 对任意的
为正整数都有
。
(1)求证:
是等差数列;
(2)求出
的通项公式
;
(3)若
(
),是否存在实数
使得
对任意的
恒成立?若存在,找出
;若不存在,请说明理由。
(本小题满分14分)
设数列
是以
为首项,
为公比的等比数列,令
,
,![]()
试用
表示
和![]()
若
且
,试比较
与![]()
的大小
是否存在实数对
,其中
,使得
成等比数列,若存在,求出实数对
和
;若不存在说明理由
(本小题满分14分)
在等比数列
的前n项和中,
最小,且
,前n项和
,求n和公比q.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com