解:设 L: y-4=k(x-1) , L在两轴上的截距分别为a,b. 则a=1-, b=4-k , 因为 k<0, -k>0, >0 a+b=5+(-k)+ 5+2=5+4=9 . 当且仅当 -k= 即 k= -2 时 a+b 取得最小值9. 所以.所求的直线方程为y-4=-2(x-1) , 即 2x+y-6=0 查看更多

 

题目列表(包括答案和解析)

已知二阶矩阵M=(
a1
0b
)有特征值λ1=2及对应的一个特征向量
e
1
=
1
1

(Ⅰ)求矩阵M;
(II)若
a
=
2
1
,求M10
a

(2)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
  (θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2C,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
(3)已知函数f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)当m=5时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

解答题

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.

(1)

求双曲线C的方程;

(2)

若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.

(3)

设直线y=mx+1与双曲线C的左支交于A、B两点,另一直线L经过M(-2,0)及AB的中点,求直线L在y轴上的截距b的取值范围.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知函数f(x)=mx3+nx2(m、n∈R,m≠0),函数y=f(x)的图象在点(2,f(2))处的切线与x轴平行.

(1)

用关于m的代数式表示n

(2)

求函数f(x)的单调递增区间

(3)

若x1>2,记函数y=f(x)的图象在点M(x1,f(x))处的切线为l,设l与x轴的交点为(x2,0),证明:x2≥3.

查看答案和解析>>

解答题

已知二次函数f(x)=ax2+bx+c,满足f(0)=f(x)=0,且f(x)的最小值是

(1)

求f(x)的解析式;

(2)

设直线l∶y=t2-t(其中0<t<,t为常数),若直线l与f(x)的图象以及y轴这二条直线和一条曲线所围成封闭图形的面积是S1(t),直线l与f(x)的图象以及直线这二条直线和一条曲线所围成封闭图形的面积是S2(t),已知,当g(t)取最小值时,求t的值.

(3)

已知m≥0,n≥0,求证:

查看答案和解析>>


同步练习册答案