如图15,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且 (1)求证:PC是⊙O的切线; (2)若OE:EA=1:2,且PA=6,求⊙O的半径. (3)求sin∠PCA的值. 查看更多

 

题目列表(包括答案和解析)

11、某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.
下列说法:
(1)学生的成绩≥27分的共有15人;
(2)学生成绩的众数在第四小组(22.5~26.5)内;
(3)学生成绩的中位数在第四小组(22.5~26.5)范围内.
其中正确的说法有(  )

查看答案和解析>>

(本小题满分10分)如图是总体的一个样本频率分布直方图,且在[15,18内频数为8.

(1)求样本在[15,18内的频率;

(2)求样本容量;

(3)若在[12,15内的小矩形面积为0.06,求在[18,33内的频数.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分10分)

    如图,在一个山坡上的一点A测得山顶一建筑物顶端C(相对于山坡)的斜度为15°,向山顶前进100m到达B点后,又测得顶端C的斜度为30°,依据所测得的数据,能否计算出山顶建筑物CD的高度,若能,请写出计算的方案(只需用文字和公式写出计算的步骤);若不能,请说明理由。

                

 

查看答案和解析>>

(本小题满分10分)选修4-1:几何证明选讲
如图15-58,已知PA是⊙O的切线,A为切点,PBC是过O的割线,PA=10,PB=5,∠BAC的平分线BC和⊙O分别交于点D、E.
求(1)⊙O的半径;(2)sin∠BAP的值;(3)AD·AE的值

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>


同步练习册答案