题目列表(包括答案和解析)
(本小题满分12分)
已知平面区域
被圆C及其内部所覆盖.
(1)当圆C的面积最小时,求圆C的方程;
(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.
(本小题满分12分) 已知
中,
分别为内角
所对的边,且满足
.
(Ⅰ)求
;
(Ⅱ)现给出三个条件:①
②
③
.从中选出两个可以确定
的条件,写出你的选择,并以此为依据,求出
的面积.(只需写出一个选定方案并完成即可)
(本小题满分12分)
已知 F1、F2是椭圆
的两焦点,
是椭圆在第一象限弧上一点,且满足
=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.
![]()
(本小题满分12分)
已知点
,一动圆过点
且与圆
内切,
(1)求动圆圆心的轨迹
的方程;
(2)设点
,点
为曲线
上任一点,求点
到点
距离的最大值
;
(3)在
的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
满足
,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com