判断点与圆的位置关系:设.点. 几何特征:设点到圆心的距离为.则有:(1) 在圆上(2) 在圆外(3)在圆内. 代数特征:将点代入方程.则有:(1)在圆 . (2) 在圆上.(3)在圆内. 查看更多

 

题目列表(包括答案和解析)

如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.
(Ⅰ)若点O到直线l的距离为,求直线l的方程;
(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.

查看答案和解析>>

如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.

(Ⅰ)若点O到直线l的距离为,求直线l的方程;

(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.

查看答案和解析>>

如图,是圆的直径,点是圆上异于的点,直线平面分别是的中点。

(I)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;

(II)设(I)中的直线与圆的另一个交点为,且点满足。记直线与平面所成的角为,异面直线所成的角为,二面角的大小为,求证:

查看答案和解析>>

如图,椭圆数学公式的右焦点为F,过焦点F作两条互相垂直的弦AB、CD,设弦AB、CD的中点分别为M、N.
(Ⅰ)求证:直线MN恒过定点T,并求出T的坐标;
(Ⅱ)求以AB、CD为直径的两圆公共弦中点的轨迹方程,并判断定点T与轨迹的位置关系.

查看答案和解析>>

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:的两个焦点,点F1、F2到直线L:x-y+=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>


同步练习册答案