1{an}是实数构成的等比数列.Sn=a1+a2+-+an.则数列{Sn}中 ( ) A.任一项均不为0 B.必有一项为0 C.至多有有限项为0 D.或无一项为0.或无穷多项为02.在△ABC中.a=λ.b=λ.A=45°.则满足此条件的三角形的个数是 A.0 B.1 C.2 D.无数个 3 若x>1.则有 A.最小值1 B.最大值1 C.最小值-1 D.最大值-1 4.将正方形沿对角线折成一个120°的二面角.使点移动到点.那么异面直线与所成角的余弦值是 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

等差数列{a}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,S5=a32
(1)求通项an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,设Tn=b1+b2+…+bn-n,若M>Tn>m对一切正整数n恒成立,求实数M、m的取值范围;
(3)试构造一个函数g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且对任意的m∈(
1
4
1
3
)
,均存在正整数N,使得当n>N时,f(n)>m.

查看答案和解析>>

设集合W由满足下列两个条件的数列{an}构成:①数学公式;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,数学公式数学公式,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dn≠M0(n∈N*).
求证:数列{dn}单调递增.

查看答案和解析>>

设集合W由满足下列两个条件的数列{an}构成:①;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M,都有dn≠M(n∈N*).
求证:数列{dn}单调递增.

查看答案和解析>>

设集合W由满足下列两个条件的数列{an}构成:①;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M,都有dn≠M(n∈N*).
求证:数列{dn}单调递增.

查看答案和解析>>

等差数列{a}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,
(1)求通项an
(2)令bn=,设Tn=b1+b2+…+bn-n,若M>Tn>m对一切正整数n恒成立,求实数M、m的取值范围;
(3)试构造一个函数g(x),使恒成立,且对任意的,均存在正整数N,使得当n>N时,f(n)>m.

查看答案和解析>>


同步练习册答案