点线面的位置关系与符号表示 查看更多

 

题目列表(包括答案和解析)

如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.

(Ⅰ)求证:CN∥平面AMB1

(Ⅱ)求证: B1M⊥平面AMG.

【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明

第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。

解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四边形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奂  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

设:AC=2a,则

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

已知平面四边形的对角线交于点,且.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离

 

【解析】本试题主要考查了空间中点、线、面的位置关系的综合运用。以及线线垂直和二面角的求解的立体几何试题运用。

 

查看答案和解析>>

已知平面四边形的对角线交于点,且.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离

 

【解析】本试题主要考查了空间中点、线、面的位置关系的综合运用。以及线线垂直和二面角的求解的立体几何试题运用。

 

查看答案和解析>>

一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是
 

查看答案和解析>>

下面是空间线面位置关系中传递性的部分相关命题:
①与两条平行直线中一条平行的平面必与另一条直线平行;
②与两条平行直线中一条垂直的平面必与另一条直线垂直;
③与两条垂直直线中一条平行的平面必与另一条直线垂直;
④与两条垂直直线中一条垂直的平面必与另一条直线平行;
⑤与两条平行平面中一个平行的直线必与另一个平面平行;
⑥与两条平行平面中一个垂直的直线必与另一个平面垂直;
⑦与两条垂直平面中一个平行的直线必与另一个平面垂直;
⑧与两条垂直平面中一个垂直的直线必与另一个平面平行;
其中正确命题的个数有
2
2
个.

查看答案和解析>>


同步练习册答案