对于函数f(x)=lg, 若f上有意义.则a的取值范围为 . 查看更多

 

题目列表(包括答案和解析)

对于函数f(x)=x2+lg(x+
x2+1
)
有以下四个结论:
①f(x)的定义域为R;
②f(x)在(0,+∞)上是增函数;
③f(x)是偶函数;
④若已知f(a)=m,则f(-a)=2a2-m.
正确的命题是
①②④
①②④

查看答案和解析>>

对于函数f(x)=x2+lg(x+
x2+1
)
有以下四个结论:
①f(x)的定义域为R;
②f(x)在(0,+∞)上是增函数;
③f(x)是偶函数;
④若已知f(a)=m,则f(-a)=2a2-m.
正确的命题是______.

查看答案和解析>>

已知函数f(x)=lg(x+
ax
-2)
,其中a是大于0的常数
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

已知函数f(x)=lg(x+-2),其中a是大于0的常数,
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(Ⅲ)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围。

查看答案和解析>>

(文)对于函数f(x)=lg(x2+ax-a-1),给出下列命题:
①当a=0时,f(x)的值域为R;        ②当a>0时,f(x)在[2,+∞)上有反函数;
③当0<a<1时,f(x)有最小值;     ④若f(x)在[2,+∞)上是增函数,则实数a的取值范围是[-4,+∞).
上述命题中正确的是
①②
①②
.(填上所有正确命题的序号)

查看答案和解析>>


同步练习册答案