函数零点的判断 如果函数在区间上的图象是连续不断的曲线.并且有.那么.函数在区间内有零点.即存在.使得.这个也就是方程的根. 但要注意:如果函数在上的图象是连续不断的曲线.且是函数在这个区间上的一个零点.却不一定有 查看更多

 

题目列表(包括答案和解析)

29、设函数f(x)=ex-m-x,其中m∈R.
(I)求函数f(x)的最值;
(II)给出定理:如果函数y=f(x)在区间[a,b]上连续,并且有f(a)•f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.
运用上述定理判断,当m>1时,函数f(x)在区间(m,2m)内是否存在零点.

查看答案和解析>>

设函数f(x)=ex-m-x,其中m∈R.
(I)求函数f(x)的最值;
(II)给出定理:如果函数y=f(x)在区间[a,b]上连续,并且有f(a)•f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在x∈(a,b),使得f(x)=0.
运用上述定理判断,当m>1时,函数f(x)在区间(m,2m)内是否存在零点.

查看答案和解析>>

(理)已知函数数学公式
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且数学公式,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

(理)已知函数
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

.设函数R.

       (I)求函数的最值;

       (II)给出定理:如果函数在区间[]上连续,并且有,那么,函数在区间内有零点,即存在.

       运用上述定理判断,当时,函数在区间内是否存在零点.

查看答案和解析>>


同步练习册答案