解:设圆C的方程为. 由于为方程的两根 ∴ 即 又因为圆过点R(0.1).故1+E+F=0, ∴E=-2k-1 ∴圆的方程 圆心C坐标∵圆在点P的切线斜率为1 ∴ 解得 ∴所求圆的方程为 直线与圆的位置关系 查看更多

 

题目列表(包括答案和解析)

解答题:解答应写出文字说明,证明过程或演算步骤.

在△ABC中,∠C=90°,BC=1.以A为圆心,AC为半径画弧交AB于D,在由弧CD与直线段BD、BC所围成的范围内作内接正方形EFGH(如图).设AC=x,EF=y,

(1)

求y与x的函数关系式

(2)

正方形EFGH的面积是否有最大值?试证明你的结论.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

在△ABC中,∠C=90°,BC=1.以A为圆心,AC为半径画弧交AB于D,在由弧CD与直线段BD、BC所围成的范围内作内接正方形EFGH(如图).设AC=x,EF=y,

(1)

求y与x的函数关系式(4分)

(2)

正方形EFGH的面积是否有最大值?试证明你的结论.(8分)

查看答案和解析>>

解答时应写出必要的文字说明、证明过程或演算步骤

已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C.

(1)求曲线C的方程;

(2)试问:过点T()是否存在直线l,使直线l与曲线C交于A,B两点,且,(O为坐标原点)若存在求出直线l的方程,不存在说明理由.

查看答案和解析>>

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>


同步练习册答案