4.1 函数的零点 学案 [预习要点及要求] 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=2x-4,g(x)=-x+4.
(1)求f(1)、g(1)、f(1)•g(1)的值;
(2)求函数y=f(x)•g(x)的解析式,并求此函数的零点;
(3)写出函数y=f(x)•g(x)的单调区间.

查看答案和解析>>

y=f(x)是定义域为R的函数,g(x)=f(x+1)+f(5-x),若函数y=g(x)有且仅有4个不同的零点,则这4个零点之和为
8
8

查看答案和解析>>

给出下列四个命题:
①函数f(x)=3x-6的零点是2;
②函数f(x)=x2+4x+4的零点是-2;
③函数f(x)=log3(x-1)的零点是1;
④函数f(x)=2x-1的零点是0.
其中正确的个数为(  )

查看答案和解析>>

已知偶函数f(x)周期为2,且当x∈[0,1]时,f(x)=2x,如果在区间[-1,3]内,函数F(x)=f(x)-kx-k-2(k∈R且k≠-2)有4个不同的零点,则k的取值范围是(  )

查看答案和解析>>

设函数f(x)=ax•lnx(a>0).
(Ⅰ)当a=2时,判断函数g(x)=f(x)-4(x-1)的零点的个数,并且说明理由;
(Ⅱ)若对所有x≥1,都有f(x)≤x2-1,求正数a的取值范围.

查看答案和解析>>


同步练习册答案