指数函数的定义: 注意:(1)定义域: (2)底数: (3)形式的严格性: 如:...是不是指数函数? 查看更多

 

题目列表(包括答案和解析)

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

(2013•闸北区一模)假设你已经学习过指数函数的基本性质和反函数的概念,但还没有学习过对数的相关概念.由指数函数f(x)=ax(a>0且a≠1)在实数集R上是单调函数,可知指数函数f(x)=ax(a>0且a≠1)存在反函数y=f-1(x),x∈(0,+∞).请你依据上述假设和已知,在不涉及对数的定义和表达形式的前提下,证明下列命题:
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函数y=f-1(x)是单调函数.

查看答案和解析>>

设函数g(x)=
x1+x2
(x>0)
,f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(1)证明:函数g(x)在(0,1]单调递增;
(2)求I的长度(注:区间(α,β)的长度定义为β-α);
(3)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是
 
(把所有正确答案的序号都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

已知函数f(x)=ax-a-x,(a>0且a≠1),
(1)判断函数f(x)的奇偶性,并证明;
(2)判断f(x)的单调性,并说明理由.(不需要严格的定义证明,只要说出理由即可)
(3)若a=
12
,方程f(x)=x+1是否有根?如果有根x0,请求出一个长度为1的区间(a,b),使x0∈(a,b);如果没有,请说明理由.(注:区间(a,b)的长度=b-a)

查看答案和解析>>


同步练习册答案