题目列表(包括答案和解析)
命题
方程
有两个不等的正实数根,
命题
方程
无实数根。若“
或
”为真命题,求
的取值范围。
【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。
解:“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题
当p为真命题时,则
,得
;
当q为真命题时,则![]()
当q和p都是真命题时,得![]()
设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
(1)若
,求
及
;
(2)求d的取值范围.
【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用
和已知的
,得到结论
第二问中,利用首项和公差表示
,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。
解:(1)因为设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
所以![]()
(2)因为![]()
得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到![]()
方程
的实数解最多有__________个,若方程有实数解,则a的取值范围是_____________________。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com