题目列表(包括答案和解析)
若不等式|x-a|<3成立的一个充分条件是0<x<4,则实数a的取值范围是_________.
(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+
)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.
、已知各项均为正数的数列{an}满足2a2n+1+3an+1an-2a2n=0(n![]()
)且a3+
是a2,a4的等差中项,数列{bn}的前n项和Sn=n2
(1)求数列{an}与{bn}的通项公式;
(2)若Tn=
,求证:Tn<![]()
(3)若
,且Kn=c1+c2+…+cn,求使Kn+n
2n+1>125成立的正整数n的最小值
(本小题共12分)设x=3是函数f (x) = (x2+ax+b)·e3-x (x∈R)的一个极值点。
⑴求a与b的关系式,(用a表示b),并求f(x)的单调区间。
⑵设a>0,
,若存在ε1,ε2∈[0,4],使|f (ε1)-g (ε2)|<1成立,求a的取值范围。
已知f(x)=a(x+2a)(x-a-3),g(x)=2-x-2,同时满足以下两个条件:
①∀x∈R,f(x)<0或g(x)<0;②∃x0∈(1,+∞),f(x0)g(x0)<0成立,则实
数a的取值范围是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com