平面的三个性质 . . , 查看更多

 

题目列表(包括答案和解析)

面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k
,则h1+2h2+3h3+4h4=
2s
k
;根据以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k
,则H1+2H2+3H3+4H4=(  )
A、
V
k
B、
3V
k
C、
4V
k
D、
8V
k

查看答案和解析>>

线段AB的中点O也是线段AB的重心,O具有以下性质:①O平分线段AB的长度;②数学公式③O是直线AB上所有点中到线段AB两个端点的距离的平方和最小的点.由此推广到三角形,设△ABC的重心为G,我们得到如下猜想:
A.G平分△ABC的面积(即△GAB、△GBC、△GAC面积相等);
B.数学公式
C.G是平面ABC内所有点中到△ABC三边的距离的平方和最小的点;
D.G是平面ABC内所有点中到△ABC三个顶点的距离的平方和最小的点;
你认为正确的猜想有________(填上所有你认为正确的猜想的序号).

查看答案和解析>>

对于各项均为整数的数列,如果(=1,2,3,…)为完全平方数(即能表示为一个整数的平方的数,例如4是完全平方数、3不是完全平方数),则称数列具有“性质”.不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“性质”,则称数列具有“变换性质”.下面三个数列:①数列的前项和;②数列1,2,3,4,5;③1,2,3,…,11.具有“性质”的为     ;具有“变换性质”的为     .

查看答案和解析>>

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.

(1)求证:

(2)若四边形ABCD是正方形,求证

(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。

【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF

第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

第三问中,设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

证明:(1)由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF 

(2) 四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

(3)设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

 

查看答案和解析>>

(2006•黄浦区二模)已知四面体ABCD,沿棱AB、AC、AD剪开,铺成平面图形,得到△A1A2A3(如图),试写出四面体ABCD应满足的一个性质:
四面体是正四面体;或者四面体的三个角B,C,D处的三个角的和都是180°
四面体是正四面体;或者四面体的三个角B,C,D处的三个角的和都是180°

查看答案和解析>>


同步练习册答案