8.已知指数函数 的图象过点.则 . A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

有下列四个命题:
①对于?x∈R,函数f(x)满足f(1+x)=f(1-x),则函数f(x)的最小正周期为2;
②所有指数函数的图象都经过点(0,1);
③若实数a,b满足a+b=1,则
1
a
+
4
b
的最小值为9;
④已知两个非零向量
a
b
,则“
a
b
”是“
a
b
=0
”的充要条件.
其中真命题的个数为(  )

查看答案和解析>>

有下列四个命题:
①对于?x∈R,函数f(x)满足f(1+x)=f(1-x),则函数f(x)的最小正周期为2;
②所有指数函数的图象都经过点(0,1);
③若实数a,b满足a+b=1,则
1
a
+
4
b
的最小值为9;
④已知两个非零向量
a
b
,则“
a
b
”是“
a
b
=0
”的充要条件.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

已知指数函数f(x)=ax(a>0,且a≠1)的图象过点(3,8),则a2.5与a2.3的大小为(  )

查看答案和解析>>

有下列四个命题:
①对于?x∈R,函数f(x)满足f(1+x)=f(1-x),则函数f(x)的最小正周期为2;
②所有指数函数的图象都经过点(0,1);
③若实数a,b满足a+b=1,则+的最小值为9;
④已知两个非零向量,则“”是“”的充要条件.
其中真命题的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:数学公式在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得数学公式.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,数学公式(可不用证明函数的连续性和可导性).

查看答案和解析>>


同步练习册答案