18.已知函数.又成等比数列. (1)求函数的解析式,(2)设.求数列的前n项和. 查看更多

 

题目列表(包括答案和解析)

已知函数,又 成等比数列。

(1)求函数的解析式;

(2)设,求数列的前n项和

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y=f(x) 是数列的“保三角形”函数。

(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;

(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=  (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

 

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y="f(x)" 是数列的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)= (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

查看答案和解析>>

        已知函数定义在区间,对任意,恒有

成立,又数列满足

   (I)在(-1,1)内求一个实数t,使得

   (II)求证:数列是等比数列,并求的表达式;

   (III)设,是否存在,使得对任意恒成立?若存在,求出m的最小值;若不存在,请说明理由。

查看答案和解析>>

(本小题满分14分)已知函数定义在区间,对任意,恒有成立,又数列满足(I)在(-1,1)内求一个实数t,使得(II)求证:数列是等比数列,并求的表达式;(III)设,是否存在,使得对任意恒成立?若存在,求出m的最小值;若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案