题目列表(包括答案和解析)
设函数f(x)=
+bx+1(a、b为实数),F(x)=![]()
(Ⅰ)若f(-1)=0,且对任意实数均有f(x)≥0成立,求F(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)若f(x)是偶函数,试判断F(x)的奇偶性.
(Ⅳ)设mn<0,m+n>0,且f(x)是偶函数,求证:F(m)+F(n)>0.
| |||||||||||||||
| |||||||||||||||
定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3)上总有f(x)≤6成立,试确定f(1)应满足的条件;
(3)解关于x的不等式
f(ax2)-f(x)>
f(a2x)-f(a),(n是一个给定的自然数,a<0.)
已知定义在(-1,1)上的函数f(x)满足f
=1,且对x、y∈(-1,1)时,有f(x)-f(y)=
.
(1)判断f(x)在(-1,1)上的奇偶性,并证明之;
(2)令x1=
,xn+1=
,求数列{f(xn)}的通项公式;
(3)设Tn为数列{
}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有Tn<
成立?若存在,求出m的最小值;若不存在,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com