11.解: (1)原式==, (2)∵∴. ∴=. 查看更多

 

题目列表(包括答案和解析)

(12分).已知角的顶点在原点,始边与轴的正半轴重合,终边经过点

(1)定义行列式 解关于的方程:

(2)若函数()的图像关于直线对称,求的值.

查看答案和解析>>

 .已知角的顶点在原点,始边与轴的正半轴重合,终边经过点

(1)定义行列式 解关于的方程:

(2)若函数()的图像关于直线对称,求的值.

 

 

 

 

 

 

 

 

查看答案和解析>>

某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.

(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;

(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;

(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)

已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)

查看答案和解析>>

求函数解析式:

(1)已知一次函数f(x)满足f(0)=5,图象过点(-2,1),求f(x);

(2)已知二次函数g(x)满足g(1)=1,g(-1)=5,图象过原点,求g(x);

(3)已知二次函数h(x)与x轴的两交点为(-2,0),(3,0),且h(0)=-3,求h(x);

(4)已知二次函数F(x),其图象的顶点是(-1,2),且经过原点,求F(x).

查看答案和解析>>

下列说法:
①函数f(x)=2cos2(
π
4
-x)-1
是最小正周期为π的偶函数;
②函数y=cos(
π
4
-2x)+1
可以改写为y=sin(
π
4
+2x)+1

③函数y=cos(
π
4
-2x)+1
的图象关于直线x=
8
对称;
④函数y=tanx的图象的所有的对称中心为(kπ,0),k∈Z;
⑤将函数y=sin2x的图象先向左平移
π
4
个单位,然后纵坐标不变,横坐标伸长为原来
的2倍,所得图象的函数解析式是y=sin(x+
π
4
)

其中所有正确的命题的序号是
②③
②③
.(请将正确的序号填在横线上)

查看答案和解析>>


同步练习册答案