13.解:由解得或.于是 所以. 因为 所以. 所以.即a的取值范围是 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>

若方程x2+(m-2)x-m+5=0的两个根都大于2,求实数m的取值范围.

阅读下面的解法,回答提出的问题.

解:第一步,令判别式Δ=(m-2)2-4(-m+5)≥0,

解得m≥4或m≤-4;

第二步,设两根为x1,x2,由x1>2,x2>2得

,所以

所以m<-2.

第三步,由得m≤-4.

第四步,由第三步得出结论.

当m∈(-∞,-4]时,此方程两根均大于2.

但当取m=-6检验知,方程x2-8x+11=0两根为x=4±,其中4-<2.

试问:产生错误的原因是什么?

查看答案和解析>>

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>

问题:将y=2x的图象向________平行移动________个单位,再作关于直线y=x对称的图象,可得函数y=log2(x+1)的图象.

对于此问题,甲、乙、丙三位同学分别给出了不同的解法:

甲:在同一坐标系内分别作y=2x与y=log2(x+1)的图象,直接观察,可知向下平行移动1个单位即得.

乙:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是它的反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.

丙:由所以点(0,0)在函数y=log2(x+1)的图象上,(0,0)点关于y=x的对称的点还是其本身.函数y=2x的图象向左或向右或向上平行移动都不会过(0,0)点,因此只能向下平行移动1个单位.

你赞同谁的解法?你还有其他更好的解法吗?

查看答案和解析>>

已知幂函数满足

(1)求实数k的值,并写出相应的函数的解析式;

(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。

【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到

因为,所以k=0,或k=1,故解析式为

(2)由(1)知,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到

(1)对于幂函数满足

因此,解得,………………3分

因为,所以k=0,或k=1,当k=0时,

当k=1时,,综上所述,k的值为0或1,。………………6分

(2)函数,………………7分

由此要求,因此抛物线开口向下,对称轴方程为:

时,,因为在区间上的最大值为5,

所以,或…………………………………………10分

解得满足题意

 

查看答案和解析>>


同步练习册答案