14.解:(1)∵.∴定义域为 关于原点对称. --2 ∴ .∴.∴为奇函数.---- ------- ----5 (2) 在上单调递减. -----------------------------------------8 (3) 当时. 所以无解. ---------------------------------10 当时. . 即. --------------------12 由(2)知.在区间上单调递减.所以 查看更多

 

题目列表(包括答案和解析)

已知函数的定义域关于原点对称,且满足以下三个条件:

是定义域中的数时,有

是定义域中的一个数);

③当时,

(1)判断之间的关系,并推断函数的奇偶性;

(2)判断函数上的单调性,并证明;

(3)当函数的定义域为时,

①求的值;②求不等式的解集.

 

查看答案和解析>>

已知函数的定义域关于原点对称,且满足以下三个条件:
是定义域中的数时,有
是定义域中的一个数);
③当时,
(1)判断之间的关系,并推断函数的奇偶性;
(2)判断函数上的单调性,并证明;
(3)当函数的定义域为时,
①求的值;②求不等式的解集.

查看答案和解析>>

已知函数的定义域关于原点对称,且满足以下三个条件:
是定义域中的数时,有
是定义域中的一个数);
③当时,
(1)判断之间的关系,并推断函数的奇偶性;
(2)判断函数上的单调性,并证明;
(3)当函数的定义域为时,
①求的值;②求不等式的解集.

查看答案和解析>>

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
f(x1)f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.

查看答案和解析>>

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有
②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.

查看答案和解析>>


同步练习册答案