面面垂直的性质定理: . 查看更多

 

题目列表(包括答案和解析)

平面与平面垂直的性质定理可简言:面面垂直,则线面垂直.两平面垂直会有许多性质,选取这条性质作为性质定理有什么意义?这条定理都有什么应用?

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

(本小题满分12分)有对称中心的曲线叫有心曲线,如圆、椭圆、双曲线都是有心曲线,过有心曲线的中心的弦叫有心曲线的直径,有心曲线有许多类似的优美性质。

(1)定理:过圆上异于直径两端点的任意一点与直径两端点的连线斜率之积为定值.试写出该定理在椭圆中的类似结论;

(2)定理:圆的两条互相垂直的直径称为共轭直径,且这两条共轭直径与圆相交得到的四边形的面积为定值.在椭圆中两条斜率之积为的直径称为共轭直径,试探究椭圆中两条共轭直径与椭圆相交得到的四边形的面积的类似结论,并加以证明.

查看答案和解析>>

(本小题满分12分)有对称中心的曲线叫有心曲线,如圆、椭圆、双曲线都是有心曲线,过有心曲线的中心的弦叫有心曲线的直径,有心曲线有许多类似的优美性质。

(1)定理:过圆上异于直径两端点的任意一点与直径两端点的连线斜率之积为定值.试写出该定理在椭圆中的类似结论;

(2)定理:圆的两条互相垂直的直径称为共轭直径,且这两条共轭直径与圆相交得到的四边形的面积为定值.在椭圆中两条斜率之积为的直径称为共轭直径,试探究椭圆中两条共轭直径与椭圆相交得到的四边形的面积的类似结论,并加以证明.

查看答案和解析>>


同步练习册答案