10.已知函数=在0.1上为减函数.则的取值范围是 ∈1.2 . 查看更多

 

题目列表(包括答案和解析)

已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

(3)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

22.已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,

,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

(3)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:

(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);
(2)f(x)只在x=-2处取得极大值;
(3)f(x)在x=-2与x=2处取得极大值;
(4)f(x)在x=0处取得极小值.
其中正确命题的个数为                                                               (  )

A.1B.2
C.3D.4

查看答案和解析>>

已知函数的图像与函数h(x)=x++2的图像关于点A(0,1)对称.

(1) 求的解析式;

(2) 若,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

 

查看答案和解析>>

已知函数f(x)是定义在R上的函数,如果函数f(x)在R上的导函数f′(x)的图象如图,则有以下几个命题:

(1)f(x)的单调递减区间是(-2,0)、(2,+∞),f(x)的单调递增区间是(-∞,-2)、(0,2);

(2)f(x)只在x=-2处取得极大值;

(3)f(x)在x=-2与x=2处取得极大值;

(4)f(x)在x=0处取得极小值.

其中正确命题的个数为                                                               (  )

A.1                                               B.2

C.3                                               D.4

 

查看答案和解析>>


同步练习册答案