题目列表(包括答案和解析)
(本小题满分12分)已知椭圆
的离心率为
,过右焦点F的直线
与
相交于
、
两点,当
的斜率为1时,坐标原点
到
的距离为
(I)求
,
的值;
(II)
上是否存在点P,使得当
绕F转到某一位置时,有
成立?
若存在,求出所有的P的坐标与
的方程;若不存在,说明理由。
(本小题满分12分)
已知椭圆
的左右焦点分别为
,离心率
,右准线方程为
。
(I)求椭圆的标准方程;
(II)过点
的直线
与该椭圆交于
两点,且
,求直线
的方程。
(本小题满分12分) 已知椭圆
的离心率
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线
且与x轴垂直,动直线
轴垂直,
于点P,求线段PF1的垂直平分线与
的交点M的轨迹方程,并指明曲线类型。
(本小题满分12分)
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
(本小题满分12分)
已知椭圆
经过点M(-2,-1),离心率为
。过点M作倾斜角
互补的两条直线分别与椭圆C交于异于M的另外两点P、Q。
(I)求椭圆C的方程;
(II)
能否为直角?证明你的结论;
(III)证明:直线PQ的斜率为定值,并求这个定值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com