19.已知方程:.[ (1)求半径最小时的圆方程, (2)判断直线与(1)中圆的位置关系. 查看更多

 

题目列表(包括答案和解析)

已知曲线C1(a>b>0)所围成的封闭图形的面积为,曲线C1的内切圆半径为,记C2为以曲线C1与坐标轴的交点为顶点的椭圆。
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线,M是l上异于椭圆中心的点。
(i)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(ii)若M是l与椭圆C2的交点,求△AMB的面积的最小值。

查看答案和解析>>

已知曲线C1所围成的封闭图形的面积为4,曲线C1的内切圆半径为,记C2为以曲线C1与坐标轴的交点顶点的椭圆.

(I)求椭圆C2的标准方程;

(II)设AB是过椭圆C,中心的任意弦,l是线段AB的垂直平分线,Ml上异于椭圆中心的点.

(1)       若|MO|=|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;

(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值。

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|。
(1)求实数a、b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程。

查看答案和解析>>

如图,已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足PQ=PA,
(1)求实数a,b之间满足的关系式;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径取最小值时⊙P的方程。

查看答案和解析>>


同步练习册答案