题目列表(包括答案和解析)
已知
,且
.
(1)求
、
的值;
(2)求
、
、
的值.
已知
,且
,求
的最小值.某同学做如下解答:
因为
,所以
┄①,
┄②,
①
②得
,所以
的最小值为24.
判断该同学解答是否正确,若不正确,请在以下空格内填写正确的最小值;若正确,请在以下空格内填写取得最小值时
、
的值. .
已知
,且
,求
的最小值.某同学做如下解答:
因为
,所以
┄①,
┄②,
①
②得
,所以
的最小值为24.
判断该同学解答是否正确,若不正确,请在以下空格内填写正确的最小值;若正确,请在以下空格内填写取得最小值时
、
的值. .
已知
,且方程
有两个不同的正根,其中一根是另一根的
倍,记等差数列
、
的前
项和分别为
,
且
(
)。
(1)若
,求
的最大值;
(2)若
,数列
的公差为3,试问在数列
与
中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列
的通项公式;若不存在,请说明理由.
(3)若
,数列
的公差为3,且
,
.
试证明:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com