题目列表(包括答案和解析)
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点
、
,点
是直角坐标平面上的动点,若将点
的横坐标保持不变、纵坐标扩大到
倍后得到点
满足
.
(1) 求动点
所在曲线
的轨迹方程;
(2)(理科)过点
作斜率为
的直线
交曲线
于
两点,且满足
,又点
关于原点O的对称点为点
,试问四点
是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点
作斜率为
的直线
交曲线
于
两点,且满足
(O为坐标原点),试判断点
是否在曲线
上,并说明理由.
设
是两个不共线的非零向量.
(1)若
=
,
=
,
=
,求证:A,B,D三点共线;
(2)试求实数k的值,使向量
和
共线. (本小题满分13分)
【解析】第一问利用
=(
)+(
)+
=
=
得到共线问题。
第二问,由向量
和
共线可知
存在实数
,使得
=
(
)
=
,结合平面向量基本定理得到参数的值。
解:(1)∵
=(
)+(
)+![]()
=
=
……………3分
∴
……………5分
又∵
∴A,B,D三点共线 ……………7分
(2)由向量
和
共线可知
存在实数
,使得
=
(
)
……………9分
∴
=
……………10分
又∵
不共线
∴
……………12分
解得![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com