20.解答:(Ⅰ) 是以1为首项.以1为公差的等差数列. (Ⅱ) ① ①得 ② ①--②得 查看更多

 

题目列表(包括答案和解析)

((本小题共13分)

若数列满足,数列数列,记=.

(Ⅰ)写出一个满足,且〉0的数列

(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。

 

 

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().

(1)

,求

(2)

试写出关于的关系式,并求的取值范围;

(3)

解:续写已知数列,使得是公差为的等差数列,…,依次类推,把已知数列推广为无穷数列.以(2)作为特例研究写出关于d的关系式并化简.(理)(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>


同步练习册答案