18.解:(1)设等差数列首项为.公差为.由题意.得 解得 (2). ∴ = 查看更多

 

题目列表(包括答案和解析)

已知数列是公差不为零的等差数列,,且成等比数列。

⑴求数列的通项公式;

⑵设,求数列的前项和

【解析】第一问中利用等差数列的首项为,公差为d,则依题意有:

第二问中,利用第一问的结论得到数列的通项公式,

,利用裂项求和的思想解决即可。

 

查看答案和解析>>

解答题:解答应写出必要的文字说明,证明过程或演算步骤.

已知各项均为正数的数列{an}前n项和为Sn,首项为a1,且anSn成等差数列.

(1)

求数列{an}的通项公式

(2)

an2=()bn,设cn,求数列{cn}的前n项和Tn

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

设数列{an}是首项为6,公差为1的等差数列;Sn为数列{bn}的前n项和,且Sn=n2+2n

(1)

求{an}及{bn}的通项公式anbn

(2)

,问是否存在k∈N+使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,说明理由

(3)

若对任意的正整数n,不等式恒成立,求正数a的取值范围.

查看答案和解析>>

为实数,首项为,公差为的等差数列的前n项和为,满足

(1)若,求;

(2)求d的取值范围.

【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的,得到结论

第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。

解:(1)因为设为实数,首项为,公差为的等差数列的前n项和为,满足

所以

(2)因为

得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到

 

查看答案和解析>>

一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。

(1)到下午6时最后一辆车行驶了多长时间?

(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?

【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)

第二问中,设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:

则行驶的总里程为:运用等差数列求和得到。

解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)         ……5分

(2)设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:    ……10分

则行驶的总里程为:

 

查看答案和解析>>


同步练习册答案