题目列表(包括答案和解析)
(本小题满分14分)
已知数列
的前
项和为
,点
在直线
上.数列
满足![]()
,且
,前11项和为154.
(1)求数列
、
的通项公式;
(2)设
,数列
的前n项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(3)设
是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)已知函数
满足:
;(1)分别写出
时
的解析式
和
时
的解析式
;并猜想
时
的解析式
(用
和
表示)(不必证明)(2分)(2)当![]()
时,![]()
的图象上有点列
和点列
,线段
与线段
的交点
,求点
的坐标
;(4分)
(3)在前面(1)(2)的基础上,请你提出一个点列
的问题,并进行研究,并写下你研究的过程 (8分)
(本题满分14分)
已知二次函数
+
的图象通过原点,对称轴为
,
.
是
的导函数,且![]()
.
(1)求
的表达式(含有字母
);
(2)若数列
满足
,且
,求数列
的通项公式;
(3)在(2)条件下,若
,
,是否存在自然数
,使得当
时![]()
恒成立?若存在,求出最小的
;若不存在,说明理由.
(本题满分14分)
对于函数
,若存在
成立,则称
的不动点.如果函数
有且只有两个不动点0,2,且![]()
(1)求函数
的解析式;
(2)已知各项不为零的数列
,求数列通项
;
(3)如果数列
满足
,求证:当
时,恒有
成立.
(本小题满分14分)
已知函数
,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列
的通项公式;
(II)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(n为正整数),求数列
的变号数;
(Ⅲ)设
(
且
),使不等式
恒成立,求正整数
的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com