题目列表(包括答案和解析)
| a |
| b |
| a |
| b |
| a |
| 7 |
| 2 |
| 1 |
| 2 |
| b |
| ||
| 2 |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| 7 |
| 2 |
| 1 |
| 2 |
| b |
| ||
| 2 |
| a |
| b |
在
中,满足
,
是
边上的一点.
(Ⅰ)若
,求向量
与向量
夹角的正弦值;
(Ⅱ)若
,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求
第二问因为
,
=m所以
,![]()
(1)当
时,则
=
(2)当
时,则
=![]()
第三问中,解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而![]()
运用三角函数求解。
(Ⅰ)解:设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为
,
=m所以
,![]()
(1)当
时,则
=
;-2分
(2)当
时,则
=
;--2分
(Ⅲ)解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而
---2分
=
=![]()
=
…………………………………2分
令
,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,![]()
本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换选做题
已知矩阵A=
有一个属于特征值1的特征向量
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
,点O(0,0),M(2,-1),N(0,2),求
在矩阵AB的对应变换作用下所得到的
的面积.
(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线
的参数方程为
,曲线
的极坐标方程为
.
(Ⅰ)将曲线
的参数方程化为普通方程;(Ⅱ)判断曲线
与曲线
的交点个数,并说明理由.
(3)(本小题满分7分)选修4-5:不等式选讲选做题
已知函数
,不等式
在
上恒成立.
(Ⅰ)求
的取值范围;
(Ⅱ)记
的最大值为
,若正实数
满足
,求
的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com