题目列表(包括答案和解析)
(本题满分14分)
设直线
与抛物线
交于不同两点A、B,F为抛物线的焦点。
(1)求
的重心G的轨迹方程;
(2)如果
的外接圆的方程。
(本小题满分14分)
设直线
. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R,都有
. 则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数
.求证:
为曲线
的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线
的“上夹线”的方程,并给出证明.
本题满分14分)设
,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(Ⅰ)求证:
;
(Ⅱ)设
,
,求证:
.
(本小题满分14分)设b>0,椭圆方程为
,抛物线方程为
。如图所示,过点F(0,b + 2)作x轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点G的切线经过椭圆的右焦点F1。
(1)求满足条件的椭圆方程和抛物线方程;
(2)点G、
所在的直线截椭圆的右下区域为D,
若圆C:
与区域D有公共点,求m的最小值。
(本小题满分14分)
设
是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(1)证明:
为等比数列;
(2)设
,求数列
的前
项和.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com