题目列表(包括答案和解析)
(本小题满分12分)
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;
②若这8位同学的数学、物理分数事实上对应下表:
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95[来源:Z&xx&k.Com] |
| 物理分数 | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
根据上表数据可知,变量
与
之间具有较强的线性相关关系,求出
与
的线性回归方程(系数精确到0.01).(参考公式:
,其中
,
;参考数据:
,
,
,
,
,
,
)
(本小题满分12分)
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
|
组别 |
PM2.5(微克/立方米) |
频数(天) |
频率 |
|
第一组 |
(0,15] |
4 |
0.1 |
|
第二组 |
(15,30] |
12 |
0.3 |
|
第三组 |
(30,45] |
8 |
0.2 |
|
第四组 |
(45,60] |
8 |
0.2 |
|
第三组 |
(60,75] |
4 |
0.1 |
|
第四组 |
(75,90) |
4 |
0.1 |
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为
,求
的分布列及数学期望
.
(本小题满分12分)如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱。
(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米量,可使总造价最低?
![]()
(本小题满分12分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
[来源:学|科|网] |
|
合计 |
|
|
50[] |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为![]()
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,
还喜欢打羽毛球,![]()
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、
喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求
和
不全被选
中的概率.
下面的临界值表供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)
2012年4月15日,央视《每周质量报告》曝光某省一些厂商用生石灰处理皮革废料,熬制成工业明胶,卖给一些药用胶囊生产企业,由于皮革在工业加工时,要使用含铬的鞣制剂,因此这样制成的胶囊,往往重金属铬超标,严重危害服用者的身体健康。该事件报道后,某市药监局立即成立调查组,要求所有的药用胶囊在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售,两轮检测是否合格相互没有影响。
(1)某药用胶囊共生产3个不同批次,经检测发现有2个批次为合格,另1个批次为不合格,现随机抽取该药用胶囊5件,求恰有2件不能销售的概率;
(2)若对某药用胶囊的3个不同批次分别进行两轮检测,药品合格的概率如下表:
|
|
第1批次 |
第2批次 |
第3批次 |
|
第一轮检测 |
|
|
|
|
第二轮检测 |
|
|
|
记该药用胶囊能通过检测进行销售的批次数为
,求
的分布列及数学期望![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com